Perinatal risk factors for chronic kidney disease
https://doi.org/10.24884/1609-2201-2025-104-3-19-29
Abstract
The widespread prevalence of chronic kidney disease (CKD) is due to a variety of modifiable and unmodifiable risk factors. Among the second group, such perinatal risk factors as premature birth, delayed intrauterine development, preeclampsia, and low birth weight are considered the most important.
Within the framework of the hypothesis of fetal programming of adult diseases, the article discusses the prevalence of these complications and possible mechanisms of CKD formation in both mother and child.
About the Authors
A. Sh. RumyantsevRussian Federation
Alexander Sh. Rumyantsev, Dr. of Sci. (Med.), Professor of the Department of Faculty Therapy of the Medical Institute
21st line V. O., 8a, Saint Petersburg, 199106
A. G. Kucher
Russian Federation
Anatoliy G. Kucher, Dr. of Sci. (Med.), Professor, Professor of the Department of Propaedeutics of Internal Diseases with clinic named after acad. M. D. Tushinksy
Saint Petersburg
References
1. Cisneros-García D. L., Sandoval-Pinto E., Cremades R. et al. Non-traditional risk factors of progression of chronic kidney disease in adult population: a scoping review. Front Med (Lausanne). 2023;10:1193984. https://doi.org/10.3389/fmed.2023.1193984.
2. Barker D. J., Osmond C., Law C. M. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health. 1989;43(3):237–40. https://doi.org/10.1136/jech.43.3.237.
3. Barker D. J. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004;58(2):114–5. https://doi.org/10.1136/jech.58.2.114.
4. Ohuma E. O., Moller A. B., Bradley E. et al. National, regional, and worldwide estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–1271. https://doi.org/10.1016/S0140-6736(23)00878-4.
5. Obrowski S., Obrowski M., Starski K. Normal Pregnancy: A Clinical Review. Acad J Ped Neonatol. 2016;1(1):555554. https://doi.org/10.19080/ajpn.2016.01.555554.
6. Goetz M., Müller M., Gutsfeld R. et al. An observational claims data analysis on the risk of maternal chronic kidney disease after preterm delivery and preeclampsia. Sci Rep. 2021;11(1):12596. https://doi.org/10.1038/s41598021-92078-2.
7. Wu W., Chen Y., Zhang X. et al. Association between preterm delivery and the risk of maternal renal disease: A systematic review and meta-analysis. Exp Ther Med. 2024;28(4):378. https://doi.org/10.3892/etm.2024.12667.
8. Dai L., Chen Y., Sun W., Liu S. Association Between Hypertensive Disorders During Pregnancy and the Subsequent Risk of End-Stage Renal Disease: A Population-Based Follow-Up Study. J Obstet Gynaecol Can. 2018;40(9):1129–1138. https://doi.org/10.1016/j.jogc.2018.01.022.
9. Pariente G., Kessous R., Sergienko R., Sheiner E. Is preterm delivery an independent risk factor for long-term maternal kidney disease? J Matern Fetal Neonatal Med. 2017;30(9):1102–1107. https://doi.org/10.1080/14767058.2016.1205022.
10. Vikse B. E., Irgens L. M., Leivestad T. et al. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359(8):800–9. https://doi.org/10.1056/NEJMoa0706790.
11. Tanz L. J., Stuart J. J., Williams P. L. et al. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women. Circulation. 2017;135(6):578–589. https://doi.org/10.1161/CIRCULATIONAHA.116.025954.
12. Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. https://doi.org/10.1016/S0140-6736(08)60074-4.
13. Ananth C. V., Vintzileos A. M. Medically indicated preterm birth: recognizing the importance of the problem. Clin Perinatol. 2008;35(1):53–67, viii. https://doi.org/10.1016/j.clp.2007.11.001.
14. Puelles V. G., Hoy W. E., Hughson M. D. et al. Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens. 2011;20(1):7–15. https://doi.org/10.1097/MNH.0b013e3283410a7d.
15. Rodríguez M. M., Gómez A. H., Abitbol C. L. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7(1):17–25. https://doi.org/10.1007/s10024-003-3029-2.
16. Zakharova E. V., Ostroumova O. D., Klepikova M. V. Drug-Induced Acute Kidney Injury. Safety and Risk of Pharmacotherapy. 2021;9(3):117–127. (In Russ.). https://doi.org/10.30895/2312-7821-2021-9-3-117-127.
17. Nakatsugawa A. C., Sampogna R. V. Postnatal Nephrogenesis in Preterm Infants: The Need to Safeguard Kidney Development After Birth. Kidney Int Rep. 2023;9(2):201–202. https://doi.org/10.1016/j.ekir.2023.12.013.
18. Barrett P. M., McCarthy F. P., Evans M. et al. Risk of long-term renal disease in women with a history of preterm delivery: a population-based cohort study. BMC Med. 2020;18(1):66. https://doi.org/10.1186/s12916020-01534-9.
19. Barrett P. M., McCarthy F. P., Kublickiene K. et al. Adverse Pregnancy Outcomes and Long-term Maternal Kidney Disease: A Systematic Review and Meta-analysis. JAMA Netw Open. 2020;3(2):e1920964. https://doi.org/10.1001/jamanetworkopen.2019.20964.
20. Wu C. C., Chen S. H., Ho C. H. et al. End-stage renal disease after hypertensive disorders in pregnancy. Am J Obstet Gynecol. 2014;210(2):147. e1–8. https://doi.org/10.1016/j.ajog.2013.09.027.
21. Almasi O., Pariente G., Kessous R. et al. Association between delivery of small-for-gestational-age neonate and long-term maternal chronic kidney disease. J Matern Fetal Neonatal Med. 2016;29(17):2861–4. https://doi.org/10.3109/14767058.2015.1107896.
22. Parker D. J. Mothers, Babies, and Disease in Later Life. London: BMJ Publishing Group, 1994. 180 p.
23. Godfrey K. M., Forrester T., Barker D. J. et al. Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol. 1994;(5):398–403.
24. Godfrey K. M., Redman C. W., Barker D. J., Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br. J. Obstet. Gynaecol. 1991;(9):886–891.
25. Langley-Evans S. C., Welham S. J., Jackson A. A. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci. 1999;64(11):965–74. https://doi.org/10.1016/s0024-3205(99)00022-3.
26. Miliku K., Voortman T., van den Hooven E. H. et al. First-trimester maternal protein intake and childhood kidney outcomes: the Generation R Study. Am J Clin Nutr. 2015;102(1):123–9. https://doi.org/10.3945/ajcn.114.102228.
27. Goodyer P., Kurpad A., Rekha S. et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol. 2007;22(2):209–14. https://doi.org/10.1007/s00467-006-0213-4.
28. El-Khashab E. K., Hamdy A. M., Maher K. M. et al. Effect of maternal vitamin A deficiency during pregnancy on neonatal kidney size. J Perinat Med. 2013;41(2):199–203. https://doi.org/10.1515/jpm-2012-0026.
29. Stewart C. P., Christian P., Katz J. et al. Maternal supplementation with vitamin A or β-carotene and cardiovascular risk factors among pre-adolescent children in rural Nepal. J Dev Orig Health Dis. 2010;1(4):262–70. https://doi.org/10.1017/S2040174410000255.
30. Stewart C. P., Christian P., Schulze K. J. et al. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J Nutr. 2009;139(8):1575–81. https://doi.org/10.3945/jn.109.106666.
31. Miliku K., Mesu A., Franco O. H. et al. Maternal and Fetal Folate, Vitamin B12, and Homocysteine Concentrations and Childhood Kidney Outcomes. Am J Kidney Dis. 2017;69(4):521–530. https://doi.org/10.1053/j.ajkd.2016.11.014.
32. Miliku K., Voortman T., Franco O. H. et al. Vitamin D status during fetal life and childhood kidney outcomes. Eur J Clin Nutr. 2016;70(5):629–34. https://doi.org/10.1038/ejcn.2015.216.
33. Hawkesworth S., Wagatsuma Y., Kahn A. I. et al. Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh. J Nutr. 2013;143(5):728–34. https://doi.org/10.3945/jn.112.168518.
34. Huang C., Guo C., Nichols C. et al. Elevated levels of protein in urine in adulthood after exposure to the Chinese famine of 1959-61 during gestation and the early postnatal period. Int J Epidemiol. 2014;43(6):1806–14. https://doi.org/10.1093/ije/dyu193.
35. Painter R. C., Roseboom T. J., van Montfrans G. A. et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol. 2005;16(1):189–94. https://doi.org/10.1681/ASN.2004060474.
36. Lee Y. Q., Collins C. E., Gordon A. et al. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review. Nutrients. 2018;10(2):241. https://doi.org/10.3390/nu10020241.
37. Makarov I. O., Yudina E. V., Borovkova E. I. Fetal growth retardation. Medical tactics. Moscow, MEDpress-inform, 2016. 56 p. (In Russ.).
38. Strizhakov A. N., Ignatko I. V., Timokhina E. V., Belotserkovtseva L. D. Fetal growth retardation syndrome. Pathogenesis. Diagnostics. Treatment. Obstetric tactics. Moscow, GEOTAR-Media, 2012. 120 p. (In Russ.).
39. Stanner S. A., Bulmer K., Andrès C. et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ. 1997;315(7119):1342–8. https://doi.org/10.1136/bmj.315.7119.1342.
40. Figueras F., Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36(2):86–98. https://doi.org/10.1159/000357592.
41. Gordijn S. J., Beune I. M., Thilaganathan B. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–9. https://doi.org/10.1002/uog.15884.
42. Lausman A., Kingdom J., Maternal Fetal Medicine Committee. Intrauterine growth restriction: screening, diagnosis, and management. J Obstet Gynaecol Can. 2013;35(8):741–748. English, French. https://doi.org/10.1016/S1701-2163(15)30865-3.
43. Phillips D. I., Barker D. J., Fall C. H. et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998;83(3):757–60. https://doi.org/10.1210/jcem.83.3.4634.
44. World Health Organisation (WHO), 2016. “Global Nutrition Targets 2025: Low Birth Weight Policy Brief,” Working Papers id:11297, eSocialSciences. URL: https://ideas.repec.org/p/ess/wpaper/id11297.html (accessed: 10.10.25).
45. Larroque B., Bertrais S., Czernichow P., Léger J. School difficulties in 20-year-olds who were born small for gestational age at term in a regional cohort study. Pediatrics. 2001;108(1):111–5. https://doi.org/10.1542/peds.108.1.111.
46. Hales C. N., Barker D. J., Clark P. M. et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303(6809):1019–22. https://doi.org/10.1136/bmj.303.6809.1019.
47. Lithell H. O., McKeigue P. M., Berglund L. et al. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50-60 years. BMJ. 1996;312(7028):406–10. https://doi.org/10.1136/bmj.312.7028.406.
48. Clausen J. O., Borch-Johnsen K., Pedersen O. Relation between birth weight and the insulin sensivity index in a population sample of 331 young, healthy Caucasians. Am. J. Epidemiol. 1997;(146):23–31.
49. Luyckx V. A., Brenner B. M. The clinical importance of nephron mass. J Am Soc Nephrol. 2010;21(6):898–910. https://doi.org/10.1681/ASN.2009121248.
50. McDonald S. D., Han Z., Mulla S. et al. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2009;146(2):138–48. https://doi.org/10.1016/j.ejogrb.2009.05.035.
Review
For citations:
Rumyantsev A.Sh., Kucher A.G. Perinatal risk factors for chronic kidney disease. New St. Petersburg Medical Records. 2025;(3):19-29. (In Russ.) https://doi.org/10.24884/1609-2201-2025-104-3-19-29
