Preview

Новые Санкт-Петербургские врачебные ведомости

Расширенный поиск

Перинатальные факторы риска хронической болезни почек

https://doi.org/10.24884/1609-2201-2025-104-3-19-29

Аннотация

Широкая распространенность хронической болезни почек (ХБП) обусловлена разнообразием модифицируемых и немодифицируемых факторов риска. Среди второй группы наиболее важными представляются такие факторы перинатального риска, как преждевременные роды, задержка внутриутробного развития, преэклампсия  и  низкая масса тела при рождении.

В статье в рамках гипотезы фетального программирования заболеваний взрослых обсуждаются распространенность этих осложнений и возможные механизмы формирования ХБП как у матери, так и у ребенка.

Об авторах

А. Ш. Румянцев
Санкт-Петербургский государственный университет, Медицинский институт
Россия

Румянцев Александр Шаликович, доктор медицинских наук, профессор кафедры факультетской терапии медицинского факультета

199106, Санкт-Петербург, 21-я линия В. О., д. 8а



А. Г. Кучер
Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова
Россия

Кучер Анатолий Григорьевич, доктор медицинских наук, профессор, профессор кафедры пропедевтики внутренних болезней с клиникой им. акад. М. Д. Тушинского

Санкт-Петербург



Список литературы

1. Cisneros-García D. L., Sandoval-Pinto E., Cremades R. et al. Non-traditional risk factors of progression of chronic kidney disease in adult population: a scoping review // Front Med (Lausanne). 2023. Vol. 10. P. 1193984. https://doi.org/10.3389/fmed.2023.1193984.

2. Barker D. J., Osmond C., Law C. M. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis // J Epidemiol Community Health. 1989. Vol. 43, № 3. P. 237–40. https://doi.org/10.1136/jech.43.3.237.

3. Barker D. J. Developmental origins of adult health and disease // J Epidemiol Community Health. 2004. Vol. 58, № 2. P. 114–5. https://doi.org/10.1136/jech.58.2.114.

4. Ohuma E. O., Moller A. B., Bradley E. et al. National, regional, and worldwide estimates of preterm birth in 2020, with trends from 2010: a systematic analysis // Lancet. 2023. Vol. 402, № 10409. P. 1261–1271. https://doi.org/10.1016/S0140-6736(23)00878-4.

5. Obrowski S., Obrowski M., Starski K. Normal Pregnancy: A Clinical Review // Acad J Ped Neonatol. 2016. Vol. 1, № 1. P. 555554. https://doi.org/10.19080/ajpn.2016.01.555554.

6. Goetz M., Müller M., Gutsfeld R. et al. An observational claims data analysis on the risk of maternal chronic kidney disease after preterm delivery and preeclampsia // Sci Rep. 2021. Vol. 11, № 1. P. 12596. https://doi.org/10.1038/s41598-021-92078-2.

7. Wu W., Chen Y., Zhang X. et al. Association between preterm delivery and the risk of maternal renal disease: A systematic review and meta-analysis // Exp Ther Med. 2024. Vol. 28, № 4. P. 378. https://doi.org/10.3892/etm.2024.12667.

8. Dai L., Chen Y., Sun W., Liu S. Association Between Hypertensive Disorders During Pregnancy and the Subsequent Risk of End-Stage Renal Disease: A Population-Based Follow-Up Study // J Obstet Gynaecol Can. 2018. Vol. 40, № 9. P. 1129–1138. https://doi.org/10.1016/j.jogc.2018.01.022.

9. Pariente G., Kessous R., Sergienko R., Sheiner E. Is preterm delivery an independent risk factor for long-term maternal kidney disease? // J Matern Fetal Neonatal Med. 2017. Vol. 30, № 9. P. 1102–1107. https://doi.org/10.1080/14767058.2016.1205022.

10. Vikse B. E., Irgens L. M., Leivestad T. et al. Preeclampsia and the risk of end-stage renal disease // N Engl J Med. 2008. Vol. 359, № 8. P. 800–9. https://doi.org/10.1056/NEJMoa0706790.

11. Tanz L. J., Stuart J. J., Williams P. L. et al. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women // Circulation. 2017. Vol. 135, № 6. P. 578–589. https://doi.org/10.1161/CIRCULATIONAHA.116.025954.

12. Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. Epidemiology and causes of preterm birth // Lancet. 2008. Vol. 371, № 9606. P. 75–84. https://doi.org/10.1016/S0140-6736(08)60074-4.

13. Ananth C. V., Vintzileos A. M. Medically indicated preterm birth: recognizing the importance of the problem // Clin Perinatol. 2008. Vol. 35, № 1. P. 53–67, viii. https://doi.org/10.1016/j.clp.2007.11.001.

14. Puelles V. G., Hoy W. E., Hughson M. D. et al. Glomerular number and size variability and risk for kidney disease // Curr Opin Nephrol Hypertens. 2011. Vol. 20, № 1. P. 7–15. https://doi.org/10.1097/MNH.0b013e3283410a7d.

15. Rodríguez M. M., Gómez A. H., Abitbol C. L. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants // Pediatr Dev Pathol. 2004. Vol. 7, № 1. P. 17–25. https://doi.org/10.1007/s10024-003-3029-2.

16. Захарова Е. В., Остроумова О. Д., Клепикова М. В. Лекарственноиндуцированное острое повреждение почек // Безопасность и риск фармакотерапии. 2021. Т. 9, № 3. С. 117–127. https://doi.org/10.30895/2312-7821-2021-9-3-117-127.

17. Nakatsugawa A. C., Sampogna R. V. Postnatal Nephrogenesis in Preterm Infants: The Need to Safeguard Kidney Development After Birth // Kidney Int Rep. 2023. Vol. 9, № 2. P. 201–202. https://doi.org/10.1016/jekir.2023.12.013.

18. Barrett P. M., McCarthy F. P., Evans M. et al. Risk of long-term renal disease in women with a history of preterm delivery: a population-based cohort study // BMC Med. 2020. Vol. 18, № 1. P. 66. https://doi.org/10.1186/s12916-020-01534-9.

19. Barrett P. M., McCarthy F. P., Kublickiene K. et al. Adverse Pregnancy Outcomes and Long-term Maternal Kidney Disease: A Systematic Review and Meta-analysis // JAMA Netw Open. 2020. Vol. 3, № 2. P. e1920964. https://doi.org/10.1001/jamanetworkopen.2019.20964.

20. Wu C. C., Chen S. H., Ho C. H. et al. End-stage renal disease after hypertensive disorders in pregnancy // Am J Obstet Gynecol. 2014. Vol. 210, № 2. P. 147.e1–8. https://doi.org/10.1016/j.ajog.2013.09.027.

21. Almasi O., Pariente G., Kessous R. et al. Association between delivery of small-for-gestational-age neonate and long-term maternal chronic kidney disease // J Matern Fetal Neonatal Med. 2016. Vol. 29, № 17. P. 2861–4. https://doi.org/10.3109/14767058.2015.1107896.

22. Parker D. J. P. Mothers, Babies, and Disease in Later Life. London: BMJ Publishing Group, 1994; 180 p.

23. Godfrey K. M., Forrester T., Barker D. J. et al. Maternal nutritional status in pregnancy and blood pressure in childhood // Br. J. Obstet. Gynaecol. 1994. № 5. P. 398–403.

24. Godfrey K. M., Redman C. W., Barker D. J., Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight // Br. J. Obstet. Gynaecol. 1991. № 9. P. 886–891.

25. Langley-Evans S. C., Welham S. J., Jackson A. A. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat // Life Sci. 1999. Vol. 64, № 11. P. 965–74. https://doi.org/10.1016/s0024-3205(99)00022-3.

26. Miliku K., Voortman T., van den Hooven E. H. et al. First-trimester maternal protein intake and childhood kidney outcomes: the Generation R Study // Am J Clin Nutr. 2015. Vol. 102, № 1. P. 123–9. https://doi.org/10.3945/ajcn.114.102228.

27. Goodyer P., Kurpad A., Rekha S. et al. Effects of maternal vitamin A status on kidney development: a pilot study // Pediatr Nephrol. 2007. Vol. 22, № 2. P. 209–14. https://doi.org/10.1007/s00467-006-0213-4.

28. El-Khashab E. K., Hamdy A. M., Maher K. M. et al. Effect of maternal vitamin A deficiency during pregnancy on neonatal kidney size // J Perinat Med. 2013. Vol. 41, № 2. P. 199–203. https://doi.org/10.1515/jpm-2012-0026.

29. Stewart C. P., Christian P., Katz J. et al. Maternal supplementation with vitamin A or β-carotene and cardiovascular risk factors among pre-adolescent children in rural Nepal // J Dev Orig Health Dis. 2010. Vol. 1, № 4. P. 262–70. https://doi.org/10.1017/S2040174410000255.

30. Stewart C. P., Christian P., Schulze K. J. et al. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal // J Nutr. 2009. Vol. 139, № 8. P. 1575–81. https://doi.org/10.3945/jn.109.106666.

31. Miliku K., Mesu A., Franco O. H. et al. Maternal and Fetal Folate, Vitamin B12, and Homocysteine Concentrations and Childhood Kidney Outcomes // Am J Kidney Dis. 2017. Vol. 69, № 4. P. 521–530. https://doi.org/10.1053/j.ajkd.2016.11.014.

32. Miliku K., Voortman T., Franco O. H. et al. Vitamin D status during fetal life and childhood kidney outcomes // Eur J Clin Nutr. 2016. Vol. 70, № 5. P. 629–34. https://doi.org/10.1038/ejcn.2015.216.

33. Hawkesworth S., Wagatsuma Y., Kahn A. I. et al. Combined food and micronutrient supplements during pregnancy have limited impact on child blood pressure and kidney function in rural Bangladesh // J Nutr. 2013. Vol. 143, № 5. P. 728–34. https://doi.org/10.3945/jn.112.168518.

34. Huang C., Guo C., Nichols C. et al. Elevated levels of protein in urine in adulthood after exposure to the Chinese famine of 1959-61 during gestation and the early postnatal period // Int J Epidemiol. 2014. Vol. 43, № 6. P. 1806–14. https://doi.org/10.1093/ije/dyu193.

35. Painter R. C., Roseboom T. J., van Montfrans G. A. et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine // J Am Soc Nephrol. 2005. Vol. 16, № 1. P. 189–94. https://doi.org/10.1681/ASN.2004060474.

36. Lee Y. Q., Collins C. E., Gordon A. et al. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review // Nutrients. 2018. Vol. 10, № 2. P. 241. https://doi.org/10.3390/nu10020241.

37. Макаров И. О., Юдина Е. В., Боровкова Е. И. Задержка роста плода. Врачебная тактика. М. : МЕДпресc-информ, 2016. 56 с.

38. Стрижаков А. Н., Игнатко И. В., Тимохина Е. В., Белоцерковцева Л. Д. Синдром задержки роста плода. Патогенез. Диагностика. Лечение. Акушерская тактика. М. : ГЭОТАР-Медиа, 2012. 120 с.

39. Stanner S. A., Bulmer K., Andrès C. et al. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study // BMJ. 1997. Vol. 315, № 7119. P. 1342–8. https://doi.org/10.1136/bmj.315.7119.1342.

40. Figueras F., Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol // Fetal Diagn Ther. 2014. Vol. 36, № 2. P. 86–98. https://doi.org/10.1159/000357592.

41. Gordijn S. J., Beune I. M., Thilaganathan B. et al. Consensus definition of fetal growth restriction: a Delphi procedure // Ultrasound Obstet Gynecol. 2016. Vol. 48, № 3. P. 333–9. https://doi.org/10.1002/uog.15884.

42. Lausman A., Kingdom J., Maternal Fetal Medicine Committee. Intrauterine growth restriction: screening, diagnosis, and management // J Obstet Gynaecol Can. 2013. Vol. 35, № 8. P. 741–748. English, French. https://doi.org/10.1016/S1701-2163(15)30865-3.

43. Phillips D. I., Barker D. J., Fall C. H. et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? // J Clin Endocrinol Metab. 1998. Vol. 83, № 3. P. 757–60. https://doi.org/10.1210/jcem.83.3.4634.

44. World Health Organisation (WHO), 2016. “Global Nutrition Targets 2025: Low Birth Weight Policy Brief,” Working Papers id:11297, eSocialSciences. URL: https://ideas.repec.org/p/ess/wpaper/id11297.html (accessed: 10.10.25).

45. Larroque B., Bertrais S., Czernichow P., Léger J. School difficulties in 20-year-olds who were born small for gestational age at term in a regional cohort study // Pediatrics. 2001. Vol. 108, № 1. P. 111–5. https://doi.org/10.1542/peds.108.1.111.

46. Hales C. N., Barker D. J., Clark P. M. et al. Fetal and infant growth and impaired glucose tolerance at age 64 // BMJ. 1991. Vol. 303, № 6809. P. 1019–22. https://doi.org/10.1136/bmj.303.6809.1019.

47. Lithell H. O., McKeigue P. M., Berglund L. et al. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50-60 years // BMJ. 1996. Vol. 312, № 7028. P. 406–10. https://doi.org/10.1136/bmj.312.7028.406.

48. Clausen J. O., Borch-Johnsen K., Pedersen O. Relation between birth weight and the insulin sensivity index in a population sample of 331 young, healthy Caucasians // Am. J. Epidemiol. 1997. № 146. P. 23–31.

49. Luyckx V. A., Brenner B. M. The clinical importance of nephron mass // J Am Soc Nephrol. 2010. Vol. 21, № 6. P. 898–910. https://doi.org/10.1681/ASN.2009121248.

50. McDonald S. D., Han Z., Mulla S. et al. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses // Eur J Obstet Gynecol Reprod Biol. 2009. Vol. 146, № 2 P. 138–48. https://doi.org/10.1016/j.ejogrb.2009.05.035.


Рецензия

Для цитирования:


Румянцев А.Ш., Кучер А.Г. Перинатальные факторы риска хронической болезни почек. Новые Санкт-Петербургские врачебные ведомости. 2025;(3):19-29. https://doi.org/10.24884/1609-2201-2025-104-3-19-29

For citation:


Rumyantsev A.Sh., Kucher A.G. Perinatal risk factors for chronic kidney disease. New St. Petersburg Medical Records. 2025;(3):19-29. (In Russ.) https://doi.org/10.24884/1609-2201-2025-104-3-19-29

Просмотров: 41


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-2201 (Print)